2D radial scan. The step of the radial trajectory is π/256. TR = 12 ms, TE = 6 ms, FA = 60°. The number of subvoxel is 1×1×4. The total number of subvoxels is 135,72,096. The calculation time was 13 s.
Pulse sequence chart visualized by the SequenceViewer:
One data acquisition sequence.
Entire sequence.
Python sequence code:
from psdk import * import numpy as np gamma = 42.57747892 # [MHz/T] TR = 12.0e+3 # [us] TE = 6.0e+3 # [us] NR = 256 # Number of readout points NPE1 = 256 # Number of 1st phase encoding fov = [256.0, 256.0, 256.0] # [mm] dwell_time = 10.0 # [us] slice_width = 5.0 # [mm] gx_value = 1e+6 / (dwell_time * gamma * fov[0]) # [mT/m] gy_value = 1e+6 / (dwell_time * gamma * fov[1]) # [mT/m] gz_value = 2.5 / (slice_width * 1.0e-3) / gamma # [mT/m] gx_rt = 300.0 # [us] gx rise time gy_rt = 300.0 # [us] gy rise time gz_rt = 300.0 # [us] gz rise time PW = 1600.0 # [us] ex_pulse_flip_angle = 60.0 # [degree] def sinc_with_hamming(flip_angle, pulse_width, points, *, min = -2.0 * np.pi, max = 2.0 * np.pi): x0 = np.arange(min, max, (max - min) / points) x1 = x0 + (max - min) / points y = (np.sinc(x0 / np.pi) + np.sinc(x1 / np.pi)) * 0.5 * np.hamming(points) return flip_angle * y * points / (y.sum() * pulse_width * 360.0e-6 * gamma) def phase_shift_angle(i): phi = i * (i + 1) / 2 * 0.0 / 360 phi -= round(phi) return 2.0 * np.pi * phi with Sequence('2D GRE projection'): with Block('Excitation', PW + 4.0 * gz_rt): GZ(0.0, gz_value, gz_rt) RF(gz_rt, sinc_with_hamming(ex_pulse_flip_angle, PW, 160), PW / 160, phase=([phase_shift_angle(i) for i in range(NPE1)], ['PE1'])) GZ(PW + gz_rt, -gz_value, 2.0 * gz_rt) GZ(PW * 1.5 + 3.0 * gz_rt, 0.0, gz_rt) with Block('PhaseEncoding', NR // 2 * dwell_time + gx_rt * 2.5): GX(0.0, ([-gx_value * np.cos(np.pi * i / NPE1) for i in range(NPE1)], ['PE1']), gx_rt) GY(0.0, ([-gy_value * np.sin(np.pi * i / NPE1) for i in range(NPE1)], ['PE1']), gy_rt) GX(NR // 2 * dwell_time + gx_rt * 0.5, ([gx_value * np.cos(np.pi * i / NPE1) for i in range(NPE1)], ['PE1']), gx_rt * 2.0) GY(NR // 2 * dwell_time + gy_rt * 0.5, ([gy_value * np.sin(np.pi * i / NPE1) for i in range(NPE1)], ['PE1']), gy_rt * 2.0) with Block('Readout', NR * dwell_time): AD(0.0, NR, dwell_time, phase=([phase_shift_angle(i) for i in range(NPE1)], ['PE1'])) with Block('Rewinding', NR // 2 * dwell_time + gx_rt * 2.5): GX(0.0, ([-gx_value * np.cos(np.pi * i / NPE1) for i in range(NPE1)], ['PE1']), gx_rt * 2.0) GY(0.0, ([-gy_value * np.sin(np.pi * i / NPE1) for i in range(NPE1)], ['PE1']), gy_rt * 2.0) GX(NR // 2 * dwell_time + gx_rt * 1.5, 0.0, gx_rt) GY(NR // 2 * dwell_time + gy_rt * 1.5, 0.0, gy_rt) with Main(): with Loop('PE1', 10): BlockRef('Excitation') WaitUntil(TE + PW * 0.5 + gz_rt - NR // 2 * 2 * dwell_time - gx_rt * 2.5) BlockRef('PhaseEncoding') WaitFor(NR * dwell_time) BlockRef('Rewinding') WaitUntil(TR) with Loop('PE1', NPE1): BlockRef('Excitation') WaitUntil(TE + PW * 0.5 + gz_rt - NR // 2 * 2 * dwell_time - gx_rt * 2.5) BlockRef('PhaseEncoding') BlockRef('Readout') BlockRef('Rewinding') WaitUntil(TR)