The following images are maps for proton density, T1, and T2 for a relaxation phantom and a dictionary phantom.
The relaxation phantom was acquired with the following MR fingerprinting sequence:
from psdk import * import numpy as np gamma = 42.57747892 # [MHz/T] TR = 20.0e+3 # [us] TE = 4.0e+3 # [us] NR = 1495 # Number of readout points NSHOT = 1000 # Number of shots fov = [256.0, 256.0, 256.0] # [mm] dwell_time = 5.0 # [us] slice_width = 6.0 # [mm] gz_value = 1.25 / (slice_width * 1.0e-3) / gamma # [mT/m] gx_rise_time = 300.0 # [us] gy_rise_time = 300.0 # [us] gz_rise_time = 300.0 # [us] excitation_pulse_width = 1600.0 # [us] excitation_pulse_flip_angle = 15.0 # [degree] gx_waveform = np.fromfile('GX.dbl', dtype=np.float64) gy_waveform = np.fromfile('GY.dbl', dtype=np.float64) variable_TR = np.fromfile('Variable_TR.dbl', dtype=np.float64) variable_FA = np.fromfile('Variable_FA.dbl', dtype=np.float64) def sinc_with_hamming(flip_angle, pulse_width, points, *, min=-2.0*np.pi, max=2.0*np.pi): x0 = np.arange(min, max, (max - min) / points) x1 = x0 + (max - min) / points y = (np.sinc(x0 / np.pi) + np.sinc(x1 / np.pi)) * 0.5 * np.hamming(points) return flip_angle * y * points / (y.sum() * pulse_width * 360.0e-6 * gamma) with Sequence('2D MRF'): with Block('Inversion', excitation_pulse_width): RF(0.0, 2.0 * sinc_with_hamming(90.0, excitation_pulse_width, 160), excitation_pulse_width / 160) with Block('Excitation', excitation_pulse_width + 2.0*gz_rise_time): GZ(0.0, gz_value, gz_rise_time) RF(gz_rise_time, sinc_with_hamming(1.0, excitation_pulse_width, 160), excitation_pulse_width / 160, factor=(variable_FA, ['SHOT'])) GZ(excitation_pulse_width + gz_rise_time, 0.0, gz_rise_time) with Block("Slice_refocus", excitation_pulse_width * 0.5 + gz_rise_time * 2.0) : GZ(0.0, -gz_value, gz_rise_time) GZ(excitation_pulse_width * 0.5 + gz_rise_time, 0.0, gz_rise_time) with Block('Readout', 10240): GX.waveform(0.0, ([gx_waveform[((7*i)%48) * 2048:(((7*i)%48)+1)*2048:] for i in range(NSHOT)], ['SHOT']), 5.0) GY.waveform(0.0, ([gy_waveform[((7*i)%48) * 2048:(((7*i)%48)+1)*2048:] for i in range(NSHOT)], ['SHOT']), 5.0) AD(0.0, NR, dwell_time) with Main(): BlockRef('Inversion') WaitUntil(100000) with Loop('SHOT', NSHOT): BlockRef('Excitation') BlockRef('Slice_refocus') WaitUntil(TE) BlockRef('Readout') WaitUntil((variable_TR, ['SHOT']))
The dictionary phantom was acquired with the following sequence:
from psdk import * import numpy as np gamma = 42.57747892 # [MHz/T] TR = 20000.0e+3 # [us] TE = 4.0e+3 # [us] NR = 1495 # Number of readout points NSHOT = 1000 # Number of shots NSHOT1 = 7 fov = [256.0, 256.0, 256.0] # [mm] dwell_time = 5.0 # [us] slice_width = 6.0 # [mm] gz_value = 1.25 / (slice_width * 1.0e-3) / gamma # [mT/m] gx_rise_time = 300.0 # [us] gy_rise_time = 300.0 # [us] gz_rise_time = 300.0 # [us] excitation_pulse_width = 1600.0 # [us] excitation_pulse_flip_angle = 15.0 # [degree] gx_waveform = np.fromfile('GX.dbl', dtype=np.float64) gy_waveform = np.fromfile('GY.dbl', dtype=np.float64) variable_TR = np.fromfile('Variable_TR.dbl', dtype=np.float64) variable_FA = np.fromfile('Variable_FA.dbl', dtype=np.float64) def sinc_with_hamming(flip_angle, pulse_width, points, *, min=-2.0*np.pi, max=2.0*np.pi): x0 = np.arange(min, max, (max - min) / points) x1 = x0 + (max - min) / points y = (np.sinc(x0 / np.pi) + np.sinc(x1 / np.pi)) * 0.5 * np.hamming(points) return flip_angle * y * points / (y.sum() * pulse_width * 360.0e-6 * gamma) with Sequence('2D MRF'): with Block('Inversion', excitation_pulse_width): RF(0.0, 2.0 * sinc_with_hamming(90.0, excitation_pulse_width, 160), excitation_pulse_width / 160) with Block('Excitation', excitation_pulse_width + 2.0*gz_rise_time): GZ(0.0, gz_value, gz_rise_time) RF(gz_rise_time, sinc_with_hamming(1.0, excitation_pulse_width, 160), excitation_pulse_width / 160, factor=(variable_FA, ['SHOT'])) GZ(excitation_pulse_width + gz_rise_time, 0.0, gz_rise_time) with Block("Slice_refocus", excitation_pulse_width * 0.5 + gz_rise_time * 2.0) : GZ(0.0, -gz_value, gz_rise_time) GZ(excitation_pulse_width * 0.5 + gz_rise_time, 0.0, gz_rise_time) with Block('Readout', 10240): GX.waveform(0.0, ([gx_waveform[((7*i+j)%48) * 2048:(((7*i+j)%48)+1)*2048:] for i in range(NSHOT) for j in range(NSHOT1)], ['SHOT', 'SHOT1']), 5.0) GY.waveform(0.0, ([gy_waveform[((7*i+j)%48) * 2048:(((7*i+j)%48)+1)*2048:] for i in range(NSHOT) for j in range(NSHOT1)], ['SHOT', 'SHOT1']), 5.0) AD(0.0, NR, dwell_time) with Main(): with Loop('SHOT1', NSHOT1): BlockRef('Inversion') WaitUntil(100000) with Loop('SHOT', NSHOT): BlockRef('Excitation') BlockRef('Slice_refocus') WaitUntil(TE) BlockRef('Readout') WaitUntil((variable_TR, ['SHOT'])) WaitUntil(TR)
The following images are those acquired with the above sequences:
The matching results are as follows:
The measured relaxation times vs designed relaxation times as as follows:
The imaging pulse sequence is as follows: